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A nontraditional picture for primary kinetic isotope effects (KIEs) is presented for proton transfer (PT) reactions
in a polar environment in the proton adiabatic regime, in which proton motion is quantum mechanical, but
is not tunneling. The description differs from the “standard” treatment of KIEs for PT in both the quantization
of the proton nuclear motion and the identification of a solvent coordinate as the reaction coordinate. KIEs
resulting from a free energy relationship (FER) based on this adiabatic PT description recently derived (Kiefer,
P. M.; Hynes, J. T.J. Phys. Chem A2002, 106, 1834,1850) are presented. It is shown that key experimental
consequences thought to validate the standard picture for KIEsalso follow from this nontraditional picture,
including those for (i) Arrhenius temperature behavior, (ii) dependence on reaction asymmetry∆GRXN, (iii)
the magnitude of the KIE, and (iv) the Swain-Schaad relationship. A detailed comparison between the present
picture and the standard description is presented.

1. Introduction

Proton transfer (PT) is of obvious importance in both
chemistry and biology;1 accordingly there has been intensive
study of PT rates in solution and other polar environments,
including proteins.1-4 A widely used and valuable experimental
technique to probe aspects of PT reactions is isotopic substitution
and comparison of the rates of transfer of a proton, deuteron,
and triton. Information from primary kinetic isotope effects
(KIEs) for PT reactions has allowed interpretation of the rate-
limiting step in complex reactions and provided insight into the
microscopic nature of the transition state (TS).1-5 In the present
work, we present a theory of KIEs, which differs fundamentally
from “standard” descriptions, for what we termadiabaticPT
reactions, which as described within, are characterized by a
nontunneling but still quantum behavior of the proton motion.

The standard view of the origin of KIEs traces back
toWestheimer and Melander (W-M).6 In its simplest version,
this picture uses a linear three-center molecular system for PT,
illustrated here for the case of an acid-base reaction within a
hydrogen-bonded (H-bonded) complex:

(Actually, these descriptions, which focus on isolated molecule
considerations, are more appropriate for H atom transfers than
for PT. Because, however, similar ideas are used in connection
with condensed phase PT, we include it here and draw attention
to special additional features for PT, such as strong coupling to
the solvent as well as reactant and product H-bond complex
features.) The reaction potential surface is a function of two
coordinates, the A-H proton distance and the distance between
the two heavy moieties, A‚‚‚B. Along the minimum energy path,
the reaction begins at large heavy atom separation with the A-H

proton distance constant, proceeds through a TS A‚‚‚H‚‚‚B and
goes onto products with large A-B separation and constant
H-B distance to produce A-‚‚‚HB+. Using TS theory, the KIE
arises from the exponentiated activation energies.1,5-7 For H
versus D transfer, the KIE is given by

As is of course well-known, the KIEs originate, in this
framework, from isotopic zero point energy (ZPE) differences
between the reactant and TS.1,5-8

The relevant ZPE in the reactant region is just the ZPE of
the A-H vibration in the reactant A-H‚‚‚B complex, the motion
transverse to the reaction coordinate in this region. For a
thermodynamically symmetric reaction (∆GRXN ) 0), the
reaction path through the TS consists solely of the proton’s
classical motion over the barrier, so that there is no proton ZPE
associated with this motion at the TS. Rather, the TS ZPE is
associated with the transverse motion at the TS (just as for the
reactant), which in the collinear model is a symmetric stretch,
the heavy particle A-B vibration.

For such a symmetric reaction, the reactant ZPE is larger for
H than for D, ZPEH

R > ZPED
R, due to the lower reactant AH

stretch vibration frequency for the more massive D. At the TS,
ZPEH

q ) ZPED
q , because the TS symmetric stretch motion does

not involve the central L (L) H, D, or T) species. The result
is the complete “loss” of the ZPE for the proton stretching mode
on going from reactant to TS. Typical reactant proton stretch
frequencies (ωCH ∼ 3000 cm-1) and a simple mass correlation
between ZPEs (i.e., ZPED ≈ ZPEH/x2) give an H vs D KIE of
about 7 at room temperature.1,5-7

It was appreciated, however, that the observed wide range in
KIE magnitudes cannot be accounted for by the range in the
reactant proton vibration frequencies, and in the W-M picture,
this range is attributed, with eq 1.2 still applying, to the variation
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kH/kD ≈ exp[-(∆GH
q - ∆GD

q )/RT

∆GH
q - ∆GD

q ≈ ZPEH
q - ZPEH

R - ZPED
q + ZPED

R (1.2)

AH‚‚‚B f A-‚‚‚HB+ (1.1)

9022 J. Phys. Chem. A2003,107,9022-9039

10.1021/jp030893s CCC: $25.00 © 2003 American Chemical Society
Published on Web 09/30/2003



in the KIE with reaction asymmetry∆GRXN, as follows.1,5-7

For an asymmetric reaction, the reaction coordinate at the TS
includes both proton and heavy particle motions. Consistent with
the Hammond postulate,9 the TS becomes more geometrically
similar to the product as the reaction becomes more endothermic,
and more similar to the reactant as it becomes more exothermic.
Thus thetransVersevibration at the TS, whose ZPE is relevant
for the rate, more and more involves the proton motion, and in
either limit approaches the bound proton stretch vibration of
the product BH or the reactant AH. This effect decreases the
KIE, resulting in akH/kD vs ∆GRXN trend that is maximal at
∆GRXN ) 0 and drops off as the reaction becomes more endo-
or exothermic.

For PT, there are four common experimental observations
that are consistent with the standard picture described above:
(i) the Arrhenius temperature dependence of the KIE (as well
as of the individual isotope rateconstants); (ii) the KIE- ∆GRXN

behavior described above; (iii) the KIE range of∼2-10; (iv)
the wide applicability of the Swain-Schaad relationship7,10

connecting ratios of KIEs (e.g.,kH/kT ) (kD/kT)3.3), which
follows directly from eq 1.2 and its variants. In succeeding
sections, we will argue that all four of the above observations
also follow directly from a quite different picture of PT reactions
in a polar environment.

We pause to note that the standard picture can be supple-
mented with a quantum contribution for classical motion over
the barrier at the TS via a tunneling correction.7,11,12 Various
departures from the above four experimental observations, such
as non-Arrhenius rate behavior or KIEs much in excess of 10,
are typically taken as indicating tunneling.1,4,5,7,12,13Addition
of tunneling corrections to the standard PT rate will obviously
affect the KIE, including its reaction asymmetry dependence.7,12

Indeed, it has been argued that variation of the tunneling
contribution versus reaction asymmetry is primarily responsible
for the broad range in magnitude of observed KIE versus
reaction asymmetry plots, instead of the variation of ZPE at
the TS described above.12 Further discussion of this is reserved
for a separate paper on KIEs for thenonadiabatic, proton
tunneling regime.14 We stress that in the present work we only
consider PT systems in which the proton doesnot tunnel.

Despite the success of the standard picture described above,
it is useful to point out why a different picture would be more
plausible. First, the standard description has a certain logical
inconsistency in the TS description. In the symmetric case,
proton motion is viewed as completely classical over the proton
barrier. For any finite reaction asymmetry, however, the quantum
character of the proton as a bound quantum vibration becomes
extremely important, because it is that character that influences
the frequency, and thus the ZPE of the transverse TS motion.
It seems difficult to maintain that proton motion within an
H-bond can be both classical and quantum. In the theory
described within, the proton motion isalways treated as a
quantum vibration with a given ZPE, for both symmetric and
asymmetric reactions.

Further, the standard picture presented above makes no
reference to the solvent. To the degree that the solvent is
included in standard descriptions, it is imagined to alter the rate
via a differential equilibrium solvation of the TS and the
reactant, again all within the standard framework recounted
above.15,16 But the equilibrium solvation assumption, which
requires, e.g., that the solvent motion is fast compared to the
relevant motion of the reacting solutes in the TS region, is not
at all plausible in the case of high-frequency quantum proton

motion; indeed, the opposite situation is more appropriate: the
solvent is generally slow compared to the proton motion.19-24

Our main line of analysis of KIE for adiabatic PT reactions
exploits a major result of our previous work;26 a nonlinear free
energy relationship (FER) between the reaction activation free
energy∆Gq and the reaction asymmetry∆GRXN for adiabatic
PT was derived, with molecular expressions given for its
ingredients, utilizing a physical picture that differs considerably
from the standard view. The PT reaction within an H-bonded
complex in eq 1.1 is viewed as driven by configurational
changes in the surrounding polar environment; the fast proton
vibration adiabatically follows the environment’s slower re-
arrangement, and one considers the instantaneous proton
potential for different environmental arrangements.27 The reac-
tion activation free energy is largely determined by the
reorganization of this environment, such that the reaction
coordinate is a solvent coordinate, together with certain ZPE
changes associated with the quantized proton motion. In contrast,
traditional approaches would instead focus on the height of any
potential barrier in the transferring proton’s coordinate, and that
coordinate is regarded as a component in the classical reaction
coordinate, especially at the TS in the thermodynamically
symmetric case, where it constitutes the entire reaction coor-
dinate.1,6,7,12,28In the present adiabatic PT picture for such a
symmetric reaction, at the TS in the solvent coordinate, the
proton motion is instead a bound quantized vibration above the
proton barrier; the proton motion is thus a transverse, rather
than a reaction coordinate.26

As discussed in detail in ref 26, the adiabatic PT regime is
expected to apply for proton donor/acceptor systems in which
there is an H-bond of sufficient strength, such that when a
symmetric proton potential is established, its barrier height is
sufficiently low that the ground proton vibrational level is above
it. (Even for the high proton barrier case, not discussed here,
the adiabatic PT limit represents the “over the barrier” contribu-
tion to the rate, with further contributions arising from quantum
tunneling.)

The underlying electronic structure in ref 26 was described
by a superposition of the two limiting neutral (N) and ionic (I)
structures for the two valence bond (VB) states with different
charge character corresponding to that of the reactant and
product in eq 1.1,

along the lines of the Mulliken picture of PT reactions.29 Strong
electronic coupling (∼1 eV) between these VB states in the
presence of the solvent produces the ground electronically
adiabatic surface on which the reaction occurs. The evolving
proton potential includes the differential (nonequilibrium)
solvation by the surrounding environment.

The FER derived in ref 26 was shown to differ numerically
in only a minor fashion from the empirical Marcus FER for
PT,28 despite a completely different physical picture for the two
FERs. This result is important because experimental (H/D) KIE
versus∆GRXN behavior is often modeled with a KIE expression
derived from the Marcus FER.2,5,7,28 We will compare and
contrast the KIE predictions of the FER of ref 26 with that of
Marcus in the section 4 discussion.

The KIE calculations in this paper presented to illustrate the
concepts have all been performed using the same oxygen
donor-oxygen acceptor H-bond model for acid-base PT within
an H-bonded complex used to derive the FER,26 except that of
course the proton is sometimes changed to a deuteron or triton.
Different reaction asymmetries were obtained from several

|Ψ〉 ) cN|ΨN〉 + cI|ΨI〉 (1.3)
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values of gas-phase offsets between the two VB states in eq
1.3 for the H-bonded complex as described previously.26

The outline of the remainder of this paper is as follows.
Section 2 briefly reviews the nonequilibrium solvation picture
for adiabatic PT and the free energy∆Gq versus ∆GRXN

relationship derived therefrom and analyzes the isotope depen-
dence in the FER. Section 3 presents the resulting primary KIEs,
demonstrating that the four experimental observations noted
above, typically taken as support for the standard view, e.g.,
the KIE trend versus reaction asymmetry, follow naturally from
the present theory. Section 4 presents a physical interpretation
of the KIEs, including a comparison of our approach and
predictions with others, i.e., that of the standard picture and
that utilizing the Marcus FER. Concluding remarks are offered
in section 5.

2. Isotope-Dependent Free Energy Relationship:∆Gq vs
∆GRXN

2a. General Picture. In the underlying picture of PT
reactions19-23,30 employed within, the reaction is driven by
configurational changes in the surrounding polar environment,
a feature of much modern work on PT reactions,19-23,26,31and
the reaction activation free energy is largely determined by the
environmental reorganization. In this adiabatic PT picture, the
rapidly vibrating proton adiabatically follows the environment’s
slower rearrangement, thereby producing a perspective in terms
of the instantaneous proton potential for different environmental
arrangements. Here we briefly describe the overall picture,
emphasizing isotopic-dependent aspects as a preliminary for the
discussion of the free energy relationship and its isotope
dependence in sections 2b and 2c.

Figure 1 displays the key features for a model overall
symmetric PT reactionin a linear H-bonded complex. Figure
1a shows the proton potential curves versus the proton coor-

dinate, for solvent configurations appropriate to that of the
reactant pair, the TS, and the product pair. These different states
of solvation, or more simply the solvent’s electric nuclear
polarization state, distort the potential from being initially
asymmetric favoring the proton residing on the acid, through
an intermediate situation where a proton symmetric double well
is established, and on to an asymmetric potential now favoring
the proton residing on the base. The solvent motion is critical,
due to the strong coupling of the reacting pair’s evolving charge
distribution to the polar solvent. Finally, as a technical point,
the solvent coordinate∆E in this picture is an alter ego of the
solvent polarization, related to a certain energy gap defined such
that for a thermodynamically symmetric PT reaction, it has a
value of zero at the solvent TS where the proton potential is
symmetric.32,33

For each of the three proton potentials in Figure 1, the
quantized ground vibrational energy, i.e., the ZPE, is indicated.
For the TS solvent configuration, the zero point level is above
the proton barrier, the hallmark of the quantum adiabatic PT
limit. (This situation is to be contrasted with the case where
the level is below the barrier top, such that the reaction would
involve proton tunneling.19,20,23,31) Here the proton motion is a
bound quantum vibration; there isno classical barrier crossing
of the proton, in contrast to the standard description of
conventional TS theory.34 We draw special attention to the
proton’s very considerable quantum delocalization in the middle
panel of Figure 1a, to be contrasted with a classical, localized
proton description. This adiabatic PT regime picture has been
supported in electronic structure calculations and simulation
studies including acid ionizations in solution21,22,35 and
elsewhere.21-23,36The above-the-barrier proton zero point level
at the reaction TS corresponds to what has been termed in the
enzyme reaction literature a “low barrier H-bond”37 situation.

In this adiabatic limit, the high-frequency quantum proton
vibration adiabatically adjusts to the reorganizing solvent, the
reaction coordinate is a solvent coordinate, rather than the proton
coordinate, and there is a free energy change up to the TS
activation free energy as the solvent rearranges, as shown in
Figure 1b. This change involves a free energy cost associated
with the solvent rearrangement and a change in the proton ZPE,
now more fully discussed.

The total free energy of the reacting system versus the solvent
reaction coordinate can be usefully decomposed into two basic
contributions,26,36 as shown in Figure 1b,

These are respectively, a “bare” free energy,Gmin, corresponding
to the situation where the proton is located at itsclassical
minimum position for any given solvent coordinate value, and
the vibrational ZPE of the proton, measured from the latter
potential energy minimum. The ZPE decreases as the TS in the
solvent coordinate is approached, because the proton potential
is becoming more symmetric and the proton is delocalized in a
larger potential region. Though both contributions to the overall
free energy are cusped, due to the shift in the proton’s minimum
position as the symmetric proton potential situation is passed,
the overall free energy profile is of course continuous.26,36The
reaction asymmetry in Figure 1b is primarily determined by
the asymmetry inGmin, mainly because the ZPE versus solvent
coordinate behavior is independent of reaction asymmetry.26 The
decomposition in eq 2.1 will prove useful for analyzing KIEs
because the isotope-dependent ZPE component ofG is isolated
from the isotope-independentclassicalfree energy curveGmin.

Figure 1. (a) Free energy curves versus proton position at the reactant
R, transition stateq, and product P solvent configurations for a
symmetric reaction. In each case, the ground-state proton vibrational
energy level (solid line) and wave function (dotted line) are indicated.
(b) Free energy curve for the symmetric PT system displayed in (a)
with the proton quantized in its vibrational ground state versus solvent
reaction coordinate (solid line). The solvent coordinate critical points
corresponding to the proton potentials in the upper panel are indicated.
The free energy at the minimum of the proton potential along the solvent
coordinateGmin (dotted line) is also shown.

G ) Gmin + ZPE (2.1)
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The description in Figure 1 has ignored any bending
contribution, an approximation justified for a linear H-bonded
complex in the adiabatic limit in section 4. It has also ignored,
for simplicity, the influence of the separation between the heavy
donor and acceptor moieties between which the proton is
transferred, i.e., the H-bond coordinate. This coordinate has been
shown to be important in the adiabatic PT regime,21-23,26,38

reflecting a significant coupling between the H-bond coordinate
and the solvent coordinate.26 We now briefly review this
coupling, emphasizing the effect of isotopic substitution.

For this purpose, we display in Figure 2 calculated free energy
surfaces for H and D transfer reactions for a symmetric (∆GRXN

) 0) oxygen donor-oxygen acceptor PT pair, versus the solvent
coordinate∆E and the H-bond coordinateQ. These surfaces
have the proton or deuteronalready quantized in its ground
vibrational state,26 such that the coordinate of either particle no
longer appears.

Both surfaces contain two minima depicting the reactant and
product complexes (Q ∼ 2.7 Å). We define theintrinsic rate of
PT (or DT) as the interconversion of these complexes (and thus,
no diffusional rate of formation of these complexes is included).
The floors of the valleys in the solvent coordinate are more
narrowly separated asQ decreases on the way to the surface’s
saddle point. This saddle point, located at∆E ) 0 andQ ∼ 2.5

Å, would define a TS in the perspective thatQ is classical.
(Although the H-bond vibration will be quantized presently, a
preliminary discussion in terms of a classicalQ perspective
proves useful.) From Figure 2, one can see that the barrier height
going from either complex to the TS is larger for D than for H.
As discussed in detail later in this section, the difference in
barrier heights is primarily due to a smaller difference in ZPE
between reactant and TS for D than for H. Figure 2 also shows
the important feature that the H-bond force constant, and thus
its frequency, varies with the solvent coordinate∆E, increasing
as the saddle point is reached from either the reactant or product.

This compression of the H-bond coordinateQ and increase
in H-bond frequency from the reactant complex to the TS
indicate a strong coupling between the H-bond coordinate
features of the surface and the solvent coordinate. This is further
highlighted by taking cuts in the surfaces in Figure 2, repre-
sentative of the reactant,∆E ) -40 kcal/mol, and the TS,∆E
) 0 (see Figure 3). Both H and D curves show a similar
compression inQ going fromQ ∼ 2.7 Å in the reactant toQ ∼
2.5 Å at the TS, with the equilibrium H-bond position slightly
larger for D in both the reactant and the TS. The H-bond
frequency change is also apparent in Figure 3, going frompωQ

) 290 cm-1 for H andpωQ ) 285 cm-1 for D in the reactant
to a higher frequency at the TS,pωQ ) 550 cm-1 for H and
pωQ ) 540 cm-1 for D. These features are consistent with the
general expectation that H-bonds are stronger at smaller H-bond
lengths39 and with experimental measurements for the geom-
etries of H-bond systems with different equilibrium sym-
metries.40 The H-bond-solvent coordinate coupling responsible
for these basic features is discussed in detail in ref 26, where it
is shown that it primarily arises from the increased mixing of
the electronic character of the reactant and product states asQ
decreases (cf. eq 1.3); this mixing of the neutral and ionic wave
functions in eq 1.3 is most important near the TS, and it is more
sensitive to the H-bond separation there. The slight variations
between H and D in the reactant and TS frequencies arise from
the difference in variation of the ZPE with respect to the solvent
and H-bond coordinates, with larger variation occurring for the
lighter H, and will be discussed further in connection with FER
coefficients in section 2b.

The H-bond vibrational mode frequency is typically suf-
ficiently high, e.g.,∼550 cm-1 in the TS region for our model
system, to require its quantization. In this description, con-
structed in ref 26b, both the H-bondand proton vibrational
modes are quantized simultaneously for each solvent configu-
ration, because the time scale of the solvent is often slower than

Figure 2. Contour plot of the PT system free energyG(Q,∆E) with
the proton (a) in its ground vibrational state versus the solvent
coordinate,∆E, and the AB separation,Q, for a symmetric reaction;
(b) Same as in (a) except a deuteron replaces the proton. Contour
spacings are 1 kcal/mol. The surfaces were generated with a model
system, with the electronic structure described using the two VB states
shown in eq 1.3.

Figure 3. Cuts of the two-dimensional surfaces in Figure 2, at two
different solvent coordinate values∆E ) -40 kcal/mol (R) and∆E )
0 (q). The solid lines are from the proton quantized surface, Figure 2a,
and the dotted lines are from the deuteron quantized surface, Figure
2b.
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that of the H-bond vibration as well as the proton vibration.
This results in a one-dimensional free energy curve similar to
that in Figure 1b. The PT rate constant expression including
the quantized H-bond vibration is the thermal average of the
PT rate constant for each H-bond vibrational statei,21c,26beach
having a TS theory form:41

Here ωSi is the reactant region solvent reaction coordinate
frequency, and∆Gi

q is the free energy barrier for PT for theith
H-bond vibrational state. The free energy barrier is the barrier
in the solvent coordinate, which includes a difference in the
ZPEs of the protonand the H-bond vibration between the
reactant and the TS (See Figure 1b). Because the H-bond
vibration frequency is∼290 cm-1 in the reactant and product
states and is larger at the TS (∼550 cm-1), the reaction barriers
for excited H-bond vibrational states are larger than for the
ground statei ) 0.26b Consequently, the PT and DT rates are
dominated by dynamics in the ground H-bond vibrational state,26

and hereafter we deal only with thei ) 0 case.42

Figure 4 displays the H and D free energy curves for a
symmetric and an asymmetric reaction. Again, the total free
energyG has a decomposition of the form in eq 2.1. The free
energyGmin evaluated at the classical minima for both the proton
and H-bond coordinates at a given solvent coordinate value is
indicated as the lower curve in Figure 4a,b. The ZPE contribu-
tions for both H and D from Figure 4a,b are displayed as Figure
4c and contain both the ZPE of the H or D vibration and that
of the H-bond mode. The reaction barrier increases starting from
an exothermic case (Figure 4b) to an endothermic case (reverse
of Figure 4b). From Figure 4a,b, one can note that both the
reactant well frequencyωs and barrier height∆Gq are isotope-
dependent. However, the contribution ofωs to the KIE
magnitude will be shown to be minimal in section 3, and we
thus focus on the isotope dependence of the reaction barrier
height variation with reaction symmetry.

One should also note from Figure 4a,b that the position of
the TS along the solvent coordinate∆Eq shifts with reaction
asymmetry. Even though bothGmin and ZPE are cusped at∆E
) 0, G is continuous; the ZPE behavior softens theGmin

discontinuity at ∆E ) 0. The addition of the ZPE to an
asymmetricGmin (cf. Figure 4b) shifts the maximum ofG away
from the maximum ofGmin at∆E ) 0, in the direction consistent
with the Hammond postulate,9 e.g., later for endothermic
reactions. It is important to remark that this indicates that the
ZPE contribution at∆Eq to the free energy barrier∆Gq in the
solvent coordinate will increase with increasing reaction asym-
metry, a crucial qualitative characteristic.26 Also visible in Figure
4b is the isotope dependence of the shift∆Eq and the associated
increase of ZPE at∆Eq with increasing reaction asymmetry;
the latter will lead to a reduction in the KIE, because the ZPE
contribution at∆Eq will become more and more similar to that
of the reactant. The quantitative analysis of these features and
their importance in KIEs will be discussed in section 2b.2, but
from Figure 4, one can already see that theVariation in ZPE
along the reaction coordinate and its isotopic difference will
play a significant role in the reaction free energy barrier
variation, and hence the KIE as well.

2b. Free Energy Relationship.The ∆Gq vs ∆GRXN FER
derived for adiabatic PT in a polar environment (cf. eq 1.3 of
ref 26b) is

where ∆Go
q is the “intrinsic” reaction barrier ∆Go

q )
∆Gq(∆GRXN ) 0), and R′o is the Brønsted coefficient slope
evaluated at∆GRXN ) 0.43 These quantities will be key in all
that follows. The coefficient of the linear term is the Brønsted
coefficient for the symmetric reaction,Ro ) 1/2; this value
reflects equal contributions of the VB electronic resonance
structures representative of the reactant and product states to
the electronic structure of the reacting pair at the symmetric
reaction TS26 (cf. eqs 1.1 and 1.3).

The intrinsic free energy barrier∆Go
q is composed of a

contribution ∆Gm,o
q due to a certain solvent reorganization

and the differenceZo
q - Zo

R ) ∆ZPEo
q in the ZPEs of the

protonic and H-bond coordinates between the reactant and the
TS for the symmetric reaction (cf. eq 1.4 of ref 26b)

The Brønsted coefficient

ki ) (ωSi/2π) exp(-∆Gi
q/RT) (2.2)

∆Gq ) ∆Go
q + 1

2
∆GRXN + 1

2
R′o∆GRXN

2 (2.3)

Figure 4. Ground-state free energy curves (solid lines H and dashed
lines D) with both the proton/deuteron and H-bond vibrations quan-
tized: (a) symmetric reaction and (b) exothermic reaction. Dotted lines
show the free energy curvesGmin excluding the ZPE. (c) The ZPE for
the proton (solid line) and deuteron (dotted line), including H-bond
vibration, vs∆E. The dashed curves in (a) and (b) plus the ZPE in (c)
give the full free energyG, the solid curves in (a) and (b).∆ER, ∆EP,
and∆Eq denote the reactant, product, and TS solvent coordinate values,
respectively.

∆Go
q ) ∆Gm,o

q + ∆ZPEo
q (2.4)
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is quantitatively described in the adiabatic PT picture both by
the relative difference between the TS and the reactant of (a)
the separation in the solvent coordinate and (b) the electronic
structure via

(see eq 5.39 in ref 26a; the same result applies when both proton
and H-bond coordinates are quantized). Here∆Eq - ∆ER is
the reaction coordinate distance between the TS and reactant,
and ∆EP - ∆ER is the corresponding distance between the
product and reactant.〈cI

2〉 is the quantumaverage over the
proton and H-bond vibrations of the limiting product ionic
contribution to the electronic structurecI

2 (see eqs 1.1 and 1.3).
The electronic structure for each critical point〈cI

2〉c (c ) R, P,
andq) is evaluated at the respective critical point position along
the reaction coordinate∆Ec (∆Ec ) ∆ER, ∆EP, or ∆Eq). As
noted above, the TS structure (and TS position along the reaction
coordinate) for a symmetric reaction is halfway between that
of the reactant and product, andRo ) 1/2, independent of isotope.

The Brønsted coefficientR has often been used to describe
TS structure via the Hammond postulate9 or the Evans-Polanyi
relation,44 whereR is the relative TS structure along the reaction
coordinate, usually a bond order or bond length. Although
adiabatic PT has a quite different environmental coordinate as
the reaction coordinate, eq 2.6 is consistent with that general
picture. The first expression in eq 2.6 explicitly describesR in
terms of the relative position of the TS along the reaction
coordinate∆E, and the second expresses this in terms of the
values of the electronic structure values〈cI

2〉, averaged over the
quantum motion, at appropriate reaction coordinate positions.

The variation of the TS structure with reaction asymmetry is
thus described by the slope of the Brønsted coefficient,R′o,
which is the derivative of eq 2.6 with respect to∆GRXN

evaluated for the symmetric reaction. In this manner,R for the
FER in eq 2.3 is linearly related to the reaction asymmetry

whereRo ) 1/2 is the zero-order coefficient. The derivative of
eq 2.6 yields

Here R′o describes the rate of change of the TS electronic
structure relative to that of the reactant with respect to reaction
asymmetry, evaluated for the symmetric case,〈cI

2〉o
q - 〈cI

2〉o
R,

and that rate is normalized by the TS-reactant difference in
electronic structure evaluated for the symmetric case,〈cI

2〉o
q -

〈cI
2〉o

R, in the denominator. As shown in ref 26b, and important
for our subsequent analysis, the derivatives in eq 2.8 can be
expressed in terms of force constants of the free energy along
the reaction coordinate,kR and kq, at the reactant and TS
positions, and the reaction coordinate distance between the
reactant and product∆∆E (cf. eq 1.5 of ref 26b)

where the explicit expressions for the force constants can be
decomposed into isotope-independent and -dependent contribu-
tions (cf. eq 2.1)

The separation∆∆E ) ∆EP - ∆ER and the curvatureskR and
kq are independent of reaction asymmetry, consistent with the
analysis and formalism presented in the derivation of the
adiabatic PT FER.26a

Both ∆Go
q and R′o are isotope-dependent. The calculated

activation free energy∆Gq versus reaction free energy∆GRXN

profiles for H, D, and T are plotted in Figure 5 and indicate,
via eq 2.3, a larger intrinsic barrier and smallerR′o for a
heavier isotope (∆GoH

q ) 3.27 kcal/mol;R′oH 0.031 mol/kcal;
∆GoD

q ) 3.88 kcal/mol;R′oD ) 0.025 mol/kcal;∆GoT
q ) 4.14

kcal/mol;R′oT ) 0.024 mol/kcal). We now turn to the explana-
tion of these trends, beginning with the intrinsic barrier.

2b.1. Intrinsic Barrier∆Go
q. In the adiabatic PT picture, the

isotope dependence of the intrinsic free energy barrier∆Go
q

given by eq 2.4 is apparent in Figure 4a, where the symmetric
reaction difference in barrier heights is due solely to the
difference in ZPE between H and D

Recall that the ZPE contains both that of isotopeL and that of
the H-bond vibrational mode. The latter’s contribution to eq
2.4 is actually a positive contribution (+0.4 kcal/mol) to the
ZPE difference∆ZPEo

q because the H-bond mode in the TS
has a higher frequency than in the reactant (cf. section 2a). This
difference is, however, smaller in magnitude than the negative
ZPE difference associated with, for example, the proton
vibrational mode (-2.5 kcal/mol). This negative value results
from a larger proton vibrational frequency in the reactant
compared with that at the TS, where the proton is delocalized
in a double well. Thus,∆ZPEo

q is overall negative (-2.1 kcal/
mol). As shown in Figure 4c, this ZPE difference decreases as

R ) ∂∆Gq

∂∆GRXN
(2.5)

R ) ∆Eq - ∆ER

∆EP - ∆ER
)

〈cI
2〉q - 〈cI

2〉R

〈cI
2〉P - 〈cI

2〉R
(2.6)

R ) 1
2

+ R′o∆GRXN (2.7)

R′o ) 1
2

1

〈cI
2〉o

q - 〈cI
2 〉o

R

∂(〈cI
2〉q - 〈cI

2〉R)

∂∆GRXN
|
o

(2.8)

R′o ) 1

∆∆E2(1

kq
+ 1

kR
) (2.9)

Figure 5. Free energy relationship∆Gq versus∆GRXN for H (∇), D
(+), and T (O). Solid lines are fits to eq 2.3 (∆GoH

q ) 3.27 kcal/mol,
R′oH ) 0.031 mol/kcal,∆GoD

q ) 3.88 kcal/mol,R′oD ) 0.025 mol/kcal,
∆GoT

q ) 4.14 kcal/mol,R′oT ) 0.024 mol/kcal). The range of∆GRXN

represents the relevant range for each isotope for which an activation
barrier exists, e.g., for reactions in which reactant and product encounter
complexes are present.

kR ) (∂2Gmin

∂∆E2
+ ∂

2ZPE

∂∆E2 )|
R

kq ) -(∂2Gmin

∂∆E2
+ ∂

2ZPE

∂∆E2 )|q

(2.10)

∆GoD
q - ∆GoH

q ) ZoD
q - ZoD

R - ZoH
q + ZoH

R )

∆ZPEoD
q - ∆ZPEoH

q (2.11)
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the mass of transferring particleL increases, as one would expect
from a ZPE ∝ 1/xmL mass dependence. The ZPE mass
dependence will be discussed further in section 2b.3.

2b.2.R′o. The isotope dependence of the Brønsted slopeR′o
is most conveniently discussed via eq 2.9. In the denominator,
the difference between H and D for the separation∆∆E of the
product and reaction solvent coordinate values is small (∼2%,
cf. Figures 4a and 4b), and so the isotopic dependence ofR′o is
predominantly determined by the isotopic difference in the TS
and reactant curvatureskq andkR. As discussed in section 3b,
the contribution from kR is not completely negligible, but it will
be shown there that the TS curvature effect is dominant in the
isotope dependence ofR′o. The latter’s difference in TS
curvature between H and D (cf. eq 2.10)

is then given by the isotopic difference in ZPE curvature at the
TS, and from Figure 4a,b,kH

q < kD
q . Thus,R′oH > R′oD because

the TS ZPE curvature for H exceeds that for D. That this
curvature is greater for H is perhaps most intuitively clear from
the fact that the magnitude of the difference between the ZPE
at the symmetric reaction TS and that in the reactant region
will always be larger for the lighter H than for the heavier D
(cf. Figure 4).

It is important to relate the above results involving the force
constants to the qualitative description given at the end of section
2a for the isotope-dependent decrease of the activation barrier
height with increasing reaction asymmetry: for increasing
asymmetry, the TS location∆Eq shifts away from∆E ) 0,
increasing the ZPE contribution to∆Gq; the latter contribution
is then progressively more similar to that of the reactant (or
product), and the KIE declines. We can make this connection
in several steps. The first is to note that from the first member
of eq 2.6, its derivativeR′ can be written as

where we have used∆∆E ) ∆EP - ∆ER, which is independent
of ∆GRXN (cf. eq 2.9). We henceforth focus only on the TS
contribution because its isotope dependence is dominant. The
required slope of the TS location∆Eq with ∆GRXN follows from
eq 5.33 in ref 26a (which also applies in the full treatment
including the H-bond coordinate):

This shift of position of the TS location in the solvent coordinate
∆Eq changes with reaction asymmetry was already apparent in
Figure4a,b,, and we now analyze it more quantitatively. Figure
6a displays the variation of the TS location in the solvent
coordinate∆Eq with ∆GRXN for both H and D. The∼2-fold
difference in slopes is clearly evident with the larger slope for
H and smaller slope for D. This 2-fold difference is predomi-
nantly due to the difference in the TS curvaturekD

q > kH
q ,

because the slope is inversely related tokq (cf. eq 2.14) because
∆∆E is only weakly isotope-dependent. For later discussion
(section 4b) of the correlation of∆Eq with TS structure, Figure
6b displays the TS electronic structure versus reaction asym-
metry.

In the second step, we focus on the TS ZPE, which is that in
Figure 4c evaluated at∆Eq, ZPEq ) ZPE(∆Eq), and whose
variation with reaction asymmetry directly correlates with the
variation of∆Eq via eq 2.14 (cf. eq 5.24 in ref 26a),

whereaq andbq are the first and second derivatives, respectively,
of ZPE with respect to∆E, evaluated at the reaction coordinate
TS position for the symmetric reaction. (The- in eq 2.15
ensures that the ZPE is minimal for∆E ) 0 and increases as
|∆E| increases.) The second-order dependence on reaction
asymmetry, given by the last term in eq 2.15, though negative
and, thus, decreasing with increasing reaction asymmetry, is
not as significant as the linear term (cf. Figure 4). The reaction
asymmetry dependence in eq 2.14 together with eq 2.15 clearly
shows that ZPEq increases with reaction asymmetry.

From eq 2.15, the initial rate of increase in ZPEq with reaction
asymmetry is the derivative with respect to∆GRXN evaluated
for the symmetric reaction

The denominator in eq 2.16 is the same as in eq 2.14, such that
eq 2.16 can be substituted into eq 2.13, plus its analogous
expression for the reactant region (see Appendix A, eq A.5)

wherea is the first derivative of the ZPE in the reactant region.

kD
q - kH

q ) ∂
2ZPE

∂∆E2 |
H

q

- ∂
2ZPE

∂∆E2 |
D

q

(2.12)

R′ ) ∂
2∆Gq

∂
2∆GRXN

) 1
∆∆E

∂(∆Eq - ∆ER)

∂∆GRXN
(2.13)

∆Eq )
∆GRXN

kq∆∆E
(2.14)

Figure 6. (a) Variation in the TS position along the reaction coordinate
∆Eq versus∆GRXN for H (+) and D (O). The lines are linear fits to the
calculations, with the slope) 0.94 for H and) 0.56 for D. (b) Quantum
average of the contribution of the product ionic VB state to the
electronic structure at the TS versus reaction asymmetry, H (+) and D
(O).

ZPEq ) ZPE(∆Eq) ) Zm,o
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2
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(2.15)

∂ZPEq

∂∆GRXN
|
o

) aq

kq∆∆E
(2.16)

R′o ) 1
∆∆E

∂(∆Eq - ∆ER)

∂∆GRXN
)

1
∆∆E[ 1

aq

∂ZPEq

∂∆GRXN
|
o

- 1
a

∂ZPER
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The isotope-dependent difference ofR′o (see Appendix A, eq
A.6)

is now explicitly described by the isotope-dependent ZPE
variation at the reactant and TS with reaction asymmetry. As
will be shown in section 3b, the first term in eq 2.18 is the
most significant, and thus, the isotope differenceR′oH - R′oD is
proportional to the difference in rate of increase of ZPEq with
increasing reaction asymmetry between H and D, which is
directly related to the TS curvature via eq 2.16. (Note thataq is
isotope-independent, a property of the discontinuity at∆E )
0.26a)

It is significant to note that the adiabatic ZPEq versus∆GRXN

behavior just described parallels the standard view in a general
way: the proton ZPEq is minimal for a symmetric reaction and
increases with reaction asymmetry, resulting in a KIE which is
maximal for ∆GRXN ) 0 and falls off for both exo- and
endothermic reactions. Again we stress that the cause of the
increase in ZPEq for the present and standard views is quite
different because the reaction coordinates and physical picture
for PT are completely different. We also note that the positions
of the reactant and product states, as seen in Figure 4 and
explicitly present in eq 2.17, also shift upon addition of the
ZPE, but this is not a major effect: the change for the reactant
ZPE going from a symmetric to an asymmetric reaction is
smaller than the corresponding ZPEq change, because the ZPE
variation is largest near∆E ) 0. The important net result is
that the difference ZPER - ZPEq decreases as the reaction
becomes more asymmetric.

2b.3. Further Analysis of the Intrinsic Barrier. Mass Scaling.
Further analysis of the intrinsic barrier∆Go

q’s isotope depen-
dence will prove useful for our subsequent discussion of both
the KIE magnitude and the Swain-Schaad relationship. The
intrinsic barrier’s isotope dependence given by eq 2.4 is only
dependent on the difference in ZPEs (cf. eq 2.11),

This illustrates a key common point of connection between the
present and standard perspectives: in both cases, the difference
in intrinsic barrier heights is related to the difference in a ZPE
between the reactant and TS between both isotopes. However,
the identityof the ZPE contribution to the TSdiffers in the two
perspectives. For example, the ZPE at the TS has no contribution
from the proton for a symmetric reaction in the standard picture,
whereas it does in the present picture.

We now address the mass scaling of the ZPE, which is key
to many aspects of KIEs. In standard treatments, this scaling is
ZPE ∝ 1/xm for the L contribution, which assumes harmonic
potentials. The proton potentials in Figure 1 are not harmonic,
especiallyat the TS, where there is a double well, and thus one
does not expect the simple ZPE mass scaling to hold. We now
explore whether there are any important consequences of this.
For this purpose, the contribution in the adiabatic picture ofL
to the ZPE, excluding the H-bond vibration ZPE, in either the
reactant or TS is calculated by subtracting off the ZPE due to
the H-bond mode, the latter being taken from the relevant
H-bond potentials (see Figure 3).

We focus first on the reactant region. The contribution from
H to the reactant ZPE (ZoH

R ) is 3.61 kcal/mol, and assuming
that ZPED ) ZPEH/x2, one predicts 2.55 kcal/mol for the
contribution from D toZoD

R . This value is extremely close to
the actual value of 2.62 kcal/mol. This should not be too
surprising, because anharmonic potentials, e.g., Morse potentials,
have a significant harmonic component for the ZPE.

Turning to the TS, the H contribution toZoH
q is 1.15 kcal/

mol and that from D toZoD
q is 0.73 kcal/mol. If one assumes

that ZPED ) ZPEH/x2, the latter is predicted to be 0.81 kcal/
mol, a larger relative difference,∼10%, from the actual value
than for the reactant region. This larger difference is to be
expected, because the TS proton potential is aVeryanharmonic
double well. Because, however, the D ZPE is quite small, the
error is small in magnitude, 0.1 kcal/mol, an error of less than
10% in the difference∆ZPEo

q in ZPEs. We now quantify the
effect this small difference has on a mass scaling of ZPEs picture
for the KIE.

If we assume that all ZPEs scale according to ZPEL ∝ 1/

xmL, eq 2.19 is

where we have scaled all differences in∆Go
q to the ZPE

difference∆ZPEo
q for H in the last line. We can test this simple

mass scaling by using the numerical values for the intrinsic
barriers from Figure 5 for all three differences in intrinsic barrier
for the H, D, and T trio and inserting them into the left-hand
side of eq 2.20. One can then estimate, using eq 2.20, the
difference in ZPE between reactant and TS for H∆ZPEoH

q ,
whose exact numerical value is∆ZPEo

q ) -2.10 kcal/mol. The
results are∆GoH

q - ∆GoD
q gives ∆ZPEoH

q ) -2.08 kcal/mol,
∆GoH

q - ∆GoT
q gives∆ZPEoH

q ) -2.06 kcal/mol, and∆GoD
q -

∆Go
q
T gives∆ZPEoH

q ) -2.00 kcal/mol. The close agreement
of these with the exact value as well as the minimal variation
between the three values highlights an important point: the
adiabatic PT picturealsogenerates, from a numerical viewpoint,
the mass scaling of standard KIE theory. This will prove to be
especially important for the Swain-Schaad relation, which is
entirely dependent on this mass scaling,7,10,13discussed in section
3c.

3. Kinetic Isotope Effects

We now document the claim of the Introduction that the
experimentally observed KIEs thought to support the standard
view also follow from the adiabatic PT perspective. We begin
by recounting general adiabatic PT relations. The KIE is the
ratio of individual rate constants, where each rate constant is
of the form in eq 2.2. For H versus D transfer, for example, the
KIE expression is

HereωS
H,D are the reactant reaction coordinate frequencies, and

∆GH,D
q are the free energy barriers for H and D transfer,

respectively.ωS
H andωS

D are nearly identical (differing only by
∼2%) because the reactant region force constant is dominated
by the force constant ofGmin (cf. Figure 4), which is independent
of isotope because it refers to a classical fixed protonic species;

R′oH - R′oD ) 1
∆∆E[ 1

aq( ∂ZPEq

∂∆GRXN
|
o,H

- ∂ZPEq

∂∆GRXN
|
o,D

) -

( 1

aH

∂ZPEH
R

∂∆GRXN
- 1

aD

∂ZPED
R

∂∆GRXN
)] (2.18)

∆GoL2

q - ∆GoL1

q ) ∆ZPEoL2

q - ∆ZPEoL1

q (2.19)

∆GoL2

q - ∆GoL1

q ) ∆ZPEoL2

q (1 - x(mL2
/mL1

)) )

∆ZPEoH
q (x(mH/mL2

) - x(mH/mL1
)) (2.20)

kH

kD
)

ωS
H

ωS
D

exp(-(∆GH
q - ∆GD

q )/RT) (3.1)
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we ignore this minor effect hereafter, and simply write

Several further forms for the KIEkH/kD will prove useful in
the subsequent discussion. The first follows from the FER
analysis in section 2 and is useful for the analysis of the KIE
versus reaction asymmetry behavior; with eq 2.3 for the reaction
barrier, the explicit form for the KIE dependence on∆GRXN is

whereas the second, equivalent form reexpresses the first part
of this in terms of the KIE for the symmetric reaction:

The content of these equations is that the KIE is maximal for
the symmetric reaction∆GRXN ) 0, given by the first term in
either eq 3.3 or eq 3.4. This general feature follows because
the Brønsted coefficient for a symmetric reaction is independent
of isotope,Ro ) 1/2 (which reflects the symmetric nature of the
electronic structure of the reacting pair at the TS (cf. eq 2.5)45).
The decrease from the maximum, characterized by a Gaussian
falloff with increasing reaction asymmetry, is due to the isotope
dependenceR′oH > R′oD, discussed in section 2b.2.

In the following subsections, we determine, via evaluation
of eqs 3.1-3.4, the various KIE aspects that result from the
adiabatic PT picture and show that these are essentially the same
as those generally thought to support the standard picture. For
each particular KIE feature, we discuss its source within the
adiabatic PT picture and for the most part delay a detailed
comparison with the standard and other approaches until section
4.

3a. KIE Arrhenius Behavior. The Arrhenius form for the
adiabatic PT KIE in eqs 3.1-3.4 is consistent with the first set
of experimental results (i) stated in the Introduction, and the
general form for the KIE is identical to that of the standard
picture (i.e., the adiabatic PT eq 3.2 is similar to the standard
eq 1.2), despite significant differences in ingredients between
the present and standard picture. The adiabatic PT rate constant
eq 3.2 has its temperature dependence governed by a temper-
ature-independent∆Gq. Although it is true that additional
temperature dependence is in principle present in both the
prefactor and∆Gq of the above KIE expressions, they are
negligible for highly polar solvents.8,47,48

3b. KIE Magnitude and Variation with Reaction Asym-
metry. The KIE behavior versus reaction asymmetry in the
adiabatic PT perspective follows directly from insertion of the
isotopic difference between the FER curves from Figure 5 into
eq 3.2. Figure 7 displays the resulting H versus D KIE (T )
300 K). The calculated KIE is maximum at∆GRXN ) 0 and
drops off symmetrically as the reaction asymmetry is increased.
The maximum KIE for the symmetric reaction and the KIE
magnitude throughout the whole range for adiabatic PT are both
consistent with experimental observations, (ii) and (iii), respec-
tively, of the Introduction. We briefly recount here the origin
of the aspects in the adiabatic PT picture.

In the adiabatic PT view, the magnitude of the intrinsic KIE
is directly related to the isotopic difference TS-R ZPE

difference∆ZPEo
q ) Zo

q - Zo
R (see eqs 2.11 and 2.19), whose

unusual feature is the presence of the ZPE for the bound proton
vibration at the solvent coordinate TS. The mass dependence
of ∆ZPEo

q can be understood most simply from the mass-
scaling of ZPEs discussed in section 2b.3. (We will return to
the issue of the KIE magnitude in section 4a.)

We now turn to the Gaussian falloff from maximum of the
KIE dependence on∆GRXN, which is due to the isotope
dependence of the Brønsted coefficient derivativesR′oH > R′oD,
as noted in the introduction of this section below eq 3.4. From
eqs 2.9 and 2.10, this isotope dependence requires attention to
the force constants at the reactant and TS solvent coordinate
positions in the adiabatic PT picture.

As discussed in section 2b.2, the isotope differenceR′oH -
R′oD has its qualitative origin, the essential point, in the greater
magnitude of the force constantkq in the solvent coordinate for
D than for H, which in turn reflects the stronger curvature of
the H ZPE at the TS compared to that for D (cf. eq 2.12). A
quantitative analysis is, however, complicated by further smaller
effects related to the isotope dependence of the reactant force
constantkR and the distance∆∆E between the product and
reactant solvent coordinate values. We now address this.

From eq 2.9, we can write

where the factor

is numerically close to one,ø ) 0.94. The difference from unity,
however, is significant: settingø ) 1, gives R′oH - R′oD )
0.0028 mol/kcal, which is far from the actual valueR′oH - R′oD
) 0.0046mol/kcal. The first two terms in eq 3.5 correspond to
the isotopic difference in reactant curvatures, which contributes
()0.0013) 28% to the total difference, whereas the last two
terms correspond to the isotopic difference in the TS curvatures,
which contribute ()0.0033) 72%. In summary, the isotope
differenceR′oH - R′oD is primarily determined via eq 3.5 by the
isotopic difference in ZPE curvatures in the TS and reactant
regions (cf. eq 2.18), with the dominant contribution from the
former.

3c. Swain-Schaad Relationship. We now turn to the
Swain-Schaad relationship, which has been an important

kH

kD
≈ exp(-(∆GH

q - ∆GD
q )/RT) (3.2)

kH

kD
) exp(-(∆GoH

q - ∆GoD
q )/RT) exp(-(R′oH -

R′oD)∆GRXN
2/2RT) (3.3)

kH

kD
)

kHo

kDo
exp(-(R′oH - R′oD)∆GRXN

2/2RT) (3.4)

Figure 7. KIE kH/kD versus∆GRXN using FERs in Figure 5 (T ) 300
K).
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experimental probe for PT reaction KIEs.4,10,13Here we examine
one of its forms

This relationship assumes the mass correlation of ZPE discussed
in section 2b.3 ZPE∝ 1/xm to relate the H, D, and T ZPEs in
eq 1.2. (Significant deviations from the predicted relationship
for primary (and secondary) KIEs have been used as a signature
of proton tunneling (nonadiabatic PT).4,10,13,49) We now examine
the adiabatic PT predictions.

Figure 8a displays the calculated adiabatic PT ln(kH/kT) versus
ln(kD/kT), determined by varying the temperature for three
reaction asymmetries. The behavior for each reaction asymmetry
is linear with a slope close to that of the expected value∼3.3.
The slope is plotted versus reaction asymmetry in Figure 8b
and shows little variation from eq 3.7. Thus, conventional
Swain-Schaad behavior also follows from the adiabatic PT
picture. We now analyze the reasons for this.

From the∆GRXN-dependent form in eq 3.3 for the KIE, the
natural logarithm of the H/D KIE is

where eq 2.11 was used for the intrinsic barrier difference. The

ratio of natural logarithms for the Swain-Schaad relation in
eq 3.7 is then

A first significant point is that the adiabatic PT form in eq 3.9
has the same important feature as the standard picture, via eq
1.2: the Swain-Schaad relation is independent of temperature.

To examine more closely the second important point, the
magnitude of the Swain-Schaad slope, we examine first the
symmetric case∆GRXN ) 0, for which the adiabatic PT eq 3.9
shows that the magnitude is related solely to the difference in
reactant and TS ZPEs. In section 2b.3, these differences in ZPEs
were shown to obey the same mass scaling used to derive the
Swain-Schaad relations (cf. eq 2.20), and hence the maximum
of the plot in Figure 8 is close to the traditionally expected value.

Figure 8 shows that there is a variation, in the adiabatic PT
perspective, of the Swain-Schaad slope with reaction asym-
metry. This can be understood by examining asymmetric
reactions, for which the reactant, product, and TS positions differ
between H, D, and T, because the variation of ZPE for each
isotope along the reaction coordinate∆E is different (see Figure
4c). Consequently, the critical point ZPEs are not those of the
same proton potentials for a given∆GRXN. Therefore, the ratio
ln(kH/kT)/ln(kD/kT) should not be constant throughout the entire
range of∆GRXN. But the net effect of these shifts is minimal,
as displayed in Figure 8.

Thus, close adherence to the Swain-Schaad relationship is
expected in the adiabatic PT picture, largely due to the mass
scaling described above. Large departures from the Swain-
Schaad relationship fortunnelingPT4 are discussed elsewhere.14

4. Further Discussion of the Interpretation of Kinetic
Isotope Effects

We have already repeatedly emphasized in previous sections
several important fundamental distinctions between the adiabatic
PT and the standard view. Despite these distinct differences in
physical perspective between adiabatic PT and the standard
W-M picture, it is important to now emphasize that a
remarkablegeneralsimilarity exists between the two perspec-
tives. For adiabatic PT, the KIE for the symmetric reaction is
dependent on the difference in magnitude of the TS-reactant
difference ∆ZPEo

q, and the variation in KIE with reaction
asymmetry is due to the variation of TS ZPE (and structure).
These two points, in fact, are shared with the W-M picture.
Recall that in the latter, the ZPEq variation also determines the
KIE (cf. eq 1.2), although its source is different from that of
the adiabatic PT picture. In what follows, the numerical and
physical differences between the two perspectives are further
enumerated. In particular, the interpretation of the KIE versus
reaction asymmetry behavior is discussed. We begin with a
reinterpretation of the magnitude of the KIE and how it
compares with the standard picture.

4a. Magnitude of the Primary Kinetic Isotope Effect.The
adiabatic PT maximum KIE in Figure 7 is in the range of KIEs
commonly expected in the standard W-M picture, item (iii) in
the Introduction. It is somewhat smaller than the higher KIEs
6-10 that one would expect with the standard view. We now
address the maximal adiabatic PT H/D KIE magnitude that can
result and how it compares with the standard picture.

Figure 8. (a) ln(kH/kT) versus ln(kD/kT) for varying T with for three
values of reaction asymmetry constant:∆GRXN ) 0 (solid line),
|∆GRXN| ) 3.5 kcal/mol (dotted line), and|∆GRXN| ) 7 kcal/mol
(dashed line). The slopes of the lines are 3.41, 3.39, and 3.16,
respectively. (b) Swain-Schaad slope ln(kH/kT)/ln(kD/kT) versus reaction
asymmetry calculated using the free energy relationships in Figure 5
(T ) 300 K).

ln(kH/kT) ) 3.3 ln(kD/kT) (3.7)
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q - ∆GRXN
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ln(kH
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)/ln(kD
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) )

∆ZPEoT
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From eqs 3.3 and 3.4, the maximum H/D KIE is that of the
symmetric reaction

From eq 2.20, where the ZPEs between H and D are mass-
scaled, this maximal KIE can be written in terms of the proton
ZPE:

(Equation 4.2 is also used1,5,7 as an estimate for the KIE in the
standard W-M picture (cf. eq 1.2).) The different symmetric
reaction KIE limits for the adiabatic PT and W-M pictures is
entirely due to their different views of the TS reaction and
transverse coordinates: for a symmetric reaction, there is always
a finite proton TS ZPE contribution for adiabatic PT, whereas
the proton TS ZPE is zero (Zq

oH ) 0) in the W-M description.
The maximum KIE is thus always smaller in the adiabatic PT
view.

Further analysis requires attention to the magnitude of H
stretch frequencies. In an H-bond with sufficient strength, the
A-H stretch frequency has a significant red shift, e.g., a
frequencyωOH of ∼3200 cm-1 for an O‚‚‚O H-bond distance
of ∼2.7 Å.25 (This is a modest H-bond; stronger H-bonds will
have ωOH < 3200 cm-1 compared to a “free” OH stretch
frequency∼3600 cm-1.25 PT in a weaker O‚‚‚O H-bond with
a larger equilibrium separation will most likely involve tunnel-
ing.26,38) With a reactant frequencyωOH ) 3200 cm-1, the
W-M picture giveskH/kD ≈ 10 at 300 K. Turning to other acids,
a similar red shift is observed for N-H vibrations in H-bonds
with ωNH ∼ 3000 cm-1.25 Carbon acids will, of course, have
smaller red shifts, but the C-H stretch frequency itself (∼3000
cm-1) is typically less than that for O-H. Hence, for all
common acidskH/kD ≈ 10 is a good estimate for the maximum
KIE for the standard picture, excluding tunneling.

Turning to adiabatic PT (with an appropriately small proton
barrier height such that neither the proton nor deuteron tunnel),
the TS ZPE for the proton is∼1 kcal/mol for H and∼0.7 kcal/
mol for D. Using ωR ∼3200 cm-1 as the maximum reactant
frequency and∼1 kcal/mol ZPE for H at the TS, the maximum
KIE without tunneling is∼6 at 300 K, a value obviously lower
than that for the W-M picture. An experimental prescription
to distinguish these perspectives would be to find the maximum
observed KIE for which the reaction is known not to involve
tunneling. Unfortunately, although the possible distinction
between tunneling and nontunneling PT reactions has generated
intensive experimental effort;1,4,5,7,12,13this is not at all straight-
forward: the difficulty is that the magnitude of tunneling KIEs
overlaps with that of nontunneling, especially in the 5-10
range.50 For a more promising arena to experimentally probe
the difference between perspectives, we now look to the other
limit of the KIE, where tunneling is less likely to be present.

To begin, the first key remark to make is that the complete
loss of the ZPE in the reactant going to the TS in a symmetric
reaction in the standard picture also limits theminimum
symmetric reaction KIE value. From eq 4.2, the minimum value
results from the smallest reactant proton stretch frequencyωR

one could have and still have PT. A reactant proton stretch
frequency of 2300 cm-1 giveskH/kD ≈ 5 for the standard picture.
Such a value, however, would obviously correspond to aVery
strong H-bond,25 and it is questionable that smaller reactant

proton frequencies would be plausible while still permitting
activated PT: the reaction barrier for interconversion of proton
states in the standard picture would be expected to be quite
small.51 Consequently, the expectedkH/kD range for a symmetric
reaction in the standard picture is∼5-10. In the adiabatic PT
approach, however, a finite symmetric reaction TS ZPE reduces
the minimum value to less than 3 (cf. Figure 7).

The disparity between the two perspectives should thus be
experimentally observable, especially for the lower KIE. In this
connection, we note that akH/kD versus reaction asymmetry plot
has been determined for a variety of PT systems, and thekH/kD

maximum ranges from 3 to 10,2,5,52 the lower limit being the
key focus here. Included in the lower part of this KIE range is
an enzymatic PT,2c a nonenzymatic PT,2e and an excited-state
PT from a photoacid to a water molecule.52 All three have a
kH/kD maximum∼3-4, a value not obtainable with the standard
picture, at least within a linear H-bond model.53

We need to stress that the above discussion has ignored
vibrational contributions other than the AH stretch. We have
already discussed in section 2 the H-bond stretch contribution
to ∆ZPEq, where it was shown that a H-bond frequency is larger
for the TS compared than for the reactant. However, because
this H-bond frequency difference does not significantly change
between H and D transfer, the KIE magnitude is unaffected. A
vibration thatis isotope-dependent is the AH bending vibration.
Loss of bending vibrations going from reactant to TS has been
postulated to account for the possibility of increased KIEs
without tunneling.1,5,7 However, when PT occurs within an
H-bonded complex, thelossof a bending vibration at the TS
does not seem likely.7 Instead, the H bending vibrational
frequencies increase with increasing H-bond strength,25 and thus
are expected (if any change is expected) to increase going from
the reactant to the TS due to a shorter and tighter H-bond
vibration in the TS compared with the reactant. Consequently,
a bending mode would decrease the reactant/TS ZPE difference
between H and D and would thus decrease the KIE magnitude.54

The discussion just presented has been for adiabatic PT in a
linear H-bonded complex (as specified in section 2a), with a
reasonably strong H-bond, as noted in section 1. It is important,
however, to briefly pause to put this into further perspective.
Figure 9a displays a model calculation for the adiabatic free
energies for PT in a linear H-bonded complex that includes in-
plane bending motion. Here a definite interaction between the
H bend and stretch in the first two vibrationally excited states
is seen, but without any impact on the system ground vibrational
state (VH ) 0), just as assumed in our treatment. The key feature
is that the bend frequency does not change significantly on going
from reactant to TS, whereas the splitting between the ground
state and single excitation in the stretch significantly decreases
going from reactant to TS. The ground state adiabatic character
is further confirmed by examination of the proton wave function
(not shown), which is strongly delocalized, as in Figure 1a. The
situation is, however, changed for a slightly larger H-bond
separation, but for a complex that is significantly bent, in Figure
9b.55 Here the PT has significant nonadiabatic character, as
indicated by the avoided crossing of the ground level and first
vibrationally excited level involving the stretch (the diabatic
crossing curves at the TS are those of the proton stretches in
the reactant and the product). In addition, excited stretch and
bend coupling is visible to the left and right of the TS. The
nonadiabatic character is confirmed by examination of the
ground state proton wave function (not shown), which is largely
localized in both the reactant and product wells. Thus, the
adiabatic description for the ground-state reaction does not

kHo

kDo
) exp[-(∆GoH

q - ∆GoD
q )/RT] (4.1)

kHo

kDo
) exp[-∆ZPEoH

q (1 - x1
2)/RT] (4.2)
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apply, and, as for the first case, coupling with the bend must
be taken into account in excited-state reactions. The violation
of the adiabaticity condition for the ground-state reaction has
its origin in the feature that even though the A-B separation
in the second case is only slightly larger than for the first case,
the bent configurations of reactant and product result in a larger
separation over which the proton must be transferred.56 This
kind of consequence was already pointed out in refs 19b and
19c, where it was noted that nonadiabatic tunneling PT (rather
than adiabatic PT) is to be expected in, e.g., intramolecular
proton transfer with bent complexes, involving longer effective
proton-transfer distances imposed by the molecular geometry.

4b. KIE and Transition State Structure. One of the most
important applications from a chemical point of view of the
standard picture is the use of measured KIE values to infer the
structure of the reaction TS. The maximum KIE in Figure 7 is
associated with a symmetric TS, and the KIE magnitude falloff
with increasing reaction asymmetry correlates to asymmetric
transition states. Thus, a small observed KIE for an exothermic
reaction could be interpreted as partial H motion in the TS for
the H reaction. More quantitatively, the TS structure is
characterized by the Brønsted coefficientR2,5,7,28(see discussion
in section 2b).

Because the adiabatic PT picture has the solvent coordinate
as the reaction coordinate, and both the proton and H-bond
coordinates are quantum rather than classical, it is not perhaps
immediately obvious how such notions would survive. As we
now show, these concepts, suitably generated, are a natural
consequence of the adiabatic PT picture. To begin exploration
of the KIE-TS structure behavior for adiabatic PT, we first
consider the relative rate of KIE falloff with reaction asymmetry
compared to the symmetric case, eq 3.4, which we rewrite using
the fact thatR, and hence the TS structure, is linearly related to
the reaction asymmetry via eq 2.7 whereR′o describes the rate
of TS structure change with reaction asymmetry. By substitution
for ∆GRXN in eq 3.4, this gives a Gaussian KIE-TS structure
behavior

whereγ is defined as

and RH is the reference TS structure. (Note that eq 4.3 is a
general expression foranyFER of the form in eq 2.3.)γ is the
scale factor that describes the sensitivity of KIE variation with
RH. Figure 10 displays the behavior in eq 4.3 for the adiabatic
PT systems in Figures 5 and 7.

In adiabatic PT, the Brønsted coefficient for PTRH is
described via eq 2.6 in terms of the contribution of the reactant
and product VB states to the quantum-averaged TS electronic
structure (e.g.,〈cI

2〉). To expand on theR-TS structure
correlation, we now consider a more geometric picture. Before
effecting this, we review the traditional approach.

4b.1. Traditional Approach.Traditionally, model potential
reaction surfaces for gas-phase H atom transfers have been
analyzed by finding the maximum along the minimum energy
path (MEP), the TS; then the frequencies parallel and perpen-
dicular to the reaction path were obtained to evaluate the KIE.57

A bond energy-bond order (BEBO) perspective was often used,
where the MEP is described by the bond ordern of the bond
being formed, and hence, the nuclear geometry and frequencies
(e.g., that ofQ andq) along that classical reaction path are a
function ofn. KIE analysis proceeds by finding the maximum
point along that reaction path, i.e., the bond ordernq of the TS,
and its corresponding parallel and perpendicular frequencies.57

The connection betweenR and the TS structure in the standard

Figure 9. Proton adiabatic free energy curves for a symmetric PT
reaction for the ground (solid line), first (dotted line), and second
(dashed line) excited proton vibrational states (including stretch and
harmonic bend) for a fixed A-B H-bond distanceQ. In the reactant
and product regions, the first excited state is a bending excitation,
whereas the second excited state is a stretching excitation. At the TS,
the situation is reversed: the first excited state is a stretching excitation,
whereas the second excited state is a bending excitation. (a) A linear
H-bondΗ-Α-B angle) 0° and short H-bond distanceQ ) 2.55 Å,
with ωstretch) 2600 cm-1 andωbend) 1200 cm-1. (b) A slightly larger
A-B separationQ ) 2.6 Å, but with a strongly bent H-bondΗ-Α-B
angle) 30°, with ωstretch ) 2900 cm-1 and ωbend ) 1200 cm-1. For
these calculations, the H-bond model of ref 26 is used, except that the
A-B H-bond separation is held fixed while a harmonic in-plane
bending motion is included. In the bent system, the stretch direction
(A-H or H-B) of the two VB potentials is out of line with the A-B
direction, i.e., the angle H-A-B in the reactant and H-B-A in the
product is nonzero. The stated H stretch and bend frequencies are those
in the reactant and product VB states.

Figure 10. Relative KIE kH/kD/(kH/kD)o versus proton Brønsted
coefficientRH for the KIE behavior in Figure 7.
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picture thus has as its origin the relationshipR ) nq;44 because
nq determines the TS geometry and frequencies,R is also directly
linked with TS structure.

4b.2. Adiabatic PT Approach.For adiabatic PT, we have
previously shown26b that progression along the solvent reaction
coordinate, which is correlated with a change of electronic
structure〈cI

2〉, also corresponds to a quantum average reaction
path similar to that predicted by the BEBO PT picture for H
atom transfer in the gas phase. We now demonstrate that a
similar connection ofR with explicit TS structure geometry is
also achieved with adiabatic PT.

The relation ofR to the quantum average over the proton
and H-bond vibrations of the A-H and A-B separations at
the TS, reactant, and product positions is derived in Appendix
B (see eq B.5) to be

where the structural element〈q - Q/2〉 is the quantum-averaged
proton distance from the center of the H-bond. Thus,R is
described as the TS structure〈q - Q/2〉q relative to the reactant

structure〈q - Q/2〉R, and scaled by an effective PT distance〈q
- Q/2〉P - 〈q - Q/2〉R. Figure 11a compares eq 4.5 to the
electronic structure-based eq 2.6, showing that the behavior is
virtually identical. Figure 11b displays the linear geometry-
electronic structure correlation between〈cI

2〉 and 〈q - Q/2〉,
discussed in detail in Appendix B.

Given eq 4.5, the Brønsted coefficient slopeR′o is thus
related to the relative change in reactant and TS geometric
structure with reaction asymmetry (see eq B.6)

Figure 11c displays the geometric (〈q - Q/2〉q) structure
behavior versus∆GRXN for both H and D, where the structural
variation with reaction asymmetry is larger for H than D (see
also Figure 6), a variation that correlates with the dependence
on the TS ZPE curvature via eqs 2.9 and 2.10.

The remarkable correlation between〈cI
2〉, 〈q - Q/2〉, and∆E

displayed in Figures 6 and 11c and quantitatively described in
Appendix B, together with the Brønsted coefficient in Figure
11a, paints a broad tableau in which TS structure can be
characterized: via quantum-averaged geometric structure〈q -
Q/2〉, quantum-averaged electronic structure〈cI

2〉, or position
along the solvent reaction coordinate∆E.58

4c. Analysis of Experimental KIE versus Reaction Asym-
metry Behavior and the Marcus Relation.From the adiabatic
PT perspective, the numerical analysis of the KIE versus∆GRXN

behavior would naturally involve, and we would advocate, the
fit of eq 3.4 to the data, and then interpretation of the parameters.
The first of these is the maximum KIE, which gives∆GoD

q -
∆GoH

q , interpreted in section 4a.59 The rate of falloff from the
maximum determines the difference in the Brønsted slopeR′o,
i.e., R′oH - R′oD, interpreted in section 4b. Although such an
analysis would appear to be straightforward to implement, a
different equation is often used to model experimental KIE
versus reaction asymmetry data2, as now discussed.

This alternate analysis is based on the empirical26 Marcus
FER for PT2c,5,28

The KIE (H vs D) following from this FER is

A variant of eq 4.82c,5 is often used to model data

where the second line was derived2c,5 assuming that∆GoH
q ∼

x∆GoH
q ∆GoD

q . Equation 4.9 allows for an attractive data

Figure 11. (a) Brønsted coefficientR versus reaction asymmetry
∆GRXN using the quantum-averaged VB ionic electronic structure
component〈cI

2〉 in eq 2.6 (0) and the quantum-averaged distance of
the proton to the H-bond center〈q - Q/2〉 in eq 4.5 (+). (b) 〈cI

2〉 - 1/2
versus〈q - Q/2〉. (c) Quantum average〈q - Q/2〉q of the TS proton
distance to the H-bond center versus∆GRXN, H (+) and D (O). Lines
are linear fits to the points.
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analysis, with only two fitting parameters required: the sym-
metric KIE and the curvature of the KIE falloff.

To make a numerical comparison of the Marcus eq 4.9 with
that of adiabatic PT, eq 3.4, we rewrite the former as

Figure 12 shows the comparison between eq 3.4 and 4.10, where
the intrinsic barriers were input parameters to eq 4.10. The
difference between the two is small, with only a 15% difference
in curvatures. This small difference traces to the small numerical
differences in the FERs eqs 4.7 and 2.3, as discussed extensively
in section 5d of ref 26a.

Despite this numerical similarity, the attribution of the falloff
of the maximum KIE with increased reaction asymmetry to
ZPEq variation, which is common to the standard W-M and
adiabatic PT pictures, is not at all explicitly evident in the
Marcus KIE expression. This source of the KIE falloff has
already been extensively discussed in sections 2b.2 and 3b, and
here we only illustrate the point here in the standard perspec-
tive.60 For a general second-order FER for PT of the form eq
2.3, the KIE is given by eq 3.4. In the standard picture, the free
energy barrier contains a classical activation energy∆Vq for
the MEP and a difference in ZPE between reactant and TS
(analogous to eq 2.4)

The derivative ofR evaluated for the symmetric reaction is thus

Because the first term in eq 4.12 is isotope-independent,60

(which can be compared to the adiabatic PT result eq 2.18).
Here the second line follows because the reactant ZPE varies
much less than the TS ZPE.62 Thus, the standard view eq 4.13
quantitatively ascribes the KIE falloff in the standard perspective

to the differential rate of TS ZPE change between H and D, a
key prediction shared by the adiabatic PT view.

Now, the same approach with the Marcus FER yields

in which the falloff is expressed via the difference in magnitude
of the ZPEq for the symmetric reaction, rather than by any
variation in ZPEq.63

5. Concluding Remarks

A theoretical description of primary KIEs for adiabatic PT
reactions has been presented utilizing a nontraditional picture
in which the proton nuclear motion is treated quantum mechani-
cally but is not tunneling. This adiabatic PT description strongly
differs from the standard treatment of KIEs for PT in both the
quantization of the proton and the identification of a solvent
coordinate as the reaction coordinate. Four different KIE features
observed experimentally, which have been believed to support
the standard interpretation of KIEs, have been shown to also
follow from this adiabatic PT picture.

However, having emphasized the pronounced differences
between the present and standard pictures, it is important to
also stress certain general features that the two perspectives
share. Namely, a TS theory formalism (see eq 1.2) applies for
both pictures in which the KIE exhibits Arrhenius behavior and
is primarily determined by the ZPE difference between the
reactant and TS for both isotopes. Of course, the definitions of
the TS differ considerably in the two pictures: the respective
reaction coordinates are entirely different. Further, the mass
scaling of ZPEs (ZPE∝ 1/xm) allows for similar magnitudes
in KIEs and leads to approximate adherence to the Swain-
Schaad relationships.

Included in the similarity is the long-held physical organic
perspective that the extent of PT in the TS correlates with
reaction asymmetry, consistent with the Hammond postulate.
For the present adiabatic PT treatment (but not the standard
one), the extent of PT at the TS in the solvent coordinate is
described (section 4b) in terms of the electronic and geometric
structure, averaged over the quantum motion of the proton and
H-bond.

A primary difference between the two perspectives concerns
the magnitude of the proton ZPE at the TS of a symmetric
reaction. In the standard picture, the TS contains no such
contribution, whereas the present picture, reflecting the quantum
nature of the proton motion, has a finite one (∼1 kcal/mol).
This distinct difference, described in section 4a, defines a lower
range for the KIE of a symmetric reaction for adiabatic PT than
that for the standard picture, consistent with experimental results.

A second key difference between the standard and present
approaches is that the reaction coordinate is a solvent coordinate.
This shift in perspective focuses attention on the local environ-
ment for the PT event and should have important consequences
for both solution and enzymatic PT rates.
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Figure 12. Relative KIEkH/kD/(kH/kD)o versus reaction asymmetry for
adiabatic PT, eq 3.4 (solid line), and for the Marcus expression, eq
4.10 (dotted line).
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Appendix A: r′o and the Rate of Change of the
Transition State ZPE

Here we derive eq 2.18 of the text connecting the Brønsted
slopeR′o with variation of ZPEs with reaction asymmetry. The
ZPEs in the reactant and TS regions have been quantitatively
described by a second-order expansion around their respective
critical positions for the symmetric reaction (cf. eqs 5.23 and
5.24 in ref 26a)

where the reactant and TS positions along the reaction coordi-
nate,∆ER and∆Eq, respectively, are linearly dependent on the
reaction asymmetry

involving the force constants of the free energy for the reactant
(kR) and the TS (kq). The- in eq A.1 for ZPEq ensures that the
ZPE is minimal for∆E ) 0 and increases as|∆E| increases.
The rate of change of the reactant and TS ZPEs with respect to
∆GRXN in the vicinity of the symmetric reaction is thus

The inversely proportional behavior of the derivatives in eq A.2
with the ZPE curvatureskR andkq demonstrates that the rates
of change of the reactant and TS ZPEs in eq A.3 are also
inversely related to these curvatures. In particular, becauseaq

is isotope-independent (a property of the discontinuity at∆E
) 026a), and∆∆E is relatively isotope-independent, the differ-
ence of the H and D rates of ZPEq change with reaction
asymmetry is solely dependent on the difference in ZPE
curvatures at the TS:

To further connect the ZPE curvatures and gradients in eq A.3
with R′o, we use them to rewrite eq 2.13 as

where the gradient of the ZPEq is always the positive increase
with increasing reaction asymmetry. Note that the two compo-
nents in eq A.5 exactly correlate with the two terms in eq 2.9.
The isotope difference of A.5 is then

and because the first term (72%) dominates the second (28%),
the most significant component inR′oH - R′oD is proportional to
the difference in the rate of increase of the ZPEq with increasing
reaction asymmetry between H and D.

Appendix B: Correlation between r and Geometric
Structure

In this appendix, quantitative relations between geometric
structure andR are derived for use in section 4b. We take〈q -
Q/2〉, the quantum average over both the proton and H-bond
coordinates of the proton distance to the center of the H-bond,
as a measure of this geometric structure or “extent of PT”.〈q
- Q/2〉 is a function of the solvent coordinate∆E, a behavior
that is isotope-dependent but is independent of reaction asym-
metry. This functional property is identical to that for quantum-
averaged electronic structure〈cI

2〉 and thus, the electronic
structure〈cI

2〉 uniquely correlates to a geometric structure〈q -
Q/2〉. This correlation is displayed in Figure 11b, and the
apparent linear dependence is represented by

wherec represents any critical point (R, P, orq). The slope in
Figure 11b can physically be described as the ratio of the change
in electronic structure between reactant and product (〈cI

2〉P -
〈cI

2〉R) over the effective PT distance (〈q - Q/2〉P - 〈q - Q/2〉R),
a value that is isotope-dependent and a physical characteristic
of the PT system. Note that eq B.1 can be used to connect〈q -
Q/2〉c to critical points along∆E,

via a relationship between〈cI
2〉c and∆Ec, similar to that derived

previously (cf. eq 5.29 in ref 26a)

The Brønsted coefficientR is described via eq 2.6 (repeated
here) as the relative change in electronic TS structure (or
distance along the reaction coordinate)

Substitution of either eq B.1 or B.2 into eq B.4 yields eq 4.5 of
the text:

The Brønsted coefficient slopeR′o is thus related to the relative
change in reactant and TS structures with reaction asymmetry

where∆∆q ) 〈q - Q/2〉P - 〈q - Q/2〉R is a constant for the
PT system.

The two terms in eq B.6 directly correlate with the two terms
in eq 2.9 of the text, such that variation of TS/reactant structures
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with reaction asymmetry is determined by the curvatures in the
reactant and TS. The isotopic difference of eq B.6

is the differential rate of TS-R structural change between H
and D, where the first difference measures the isotopic difference
in TS structure variation and the second difference measures
the isotopic difference in reactant structure variation; the former
difference is more quantitatively significant (see section 2b.2).
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Further, H/D KIE calculations by the present authors for gas-phase H atom
transfer (CH‚‚‚C f C‚‚‚HC) using the BEBO perspective57 versus reaction
asymmetry are not well described quantitatively by eq 4.7 when ZPE

contributions for either H and D are taken into account.60 Here the difference
in bond energy between the carbon acid and carbon base was varied to
give a ∆GRXN range of(4 kcal/mol. The resulting KIE versus∆GRXN

behavior gave a KIE maximum of 6.8 for the symmetric reaction and
dropped to 1.35 for∆GRXN ) (4 kcal/mol, i.e., an 80% drop. For the
same∆GRXN range, using the full Marcus eq 4.8 (with the intrinsic barriers
for H and D determined from the previous calculations) gives the exact
KIE maximum, but the KIE only drops to 6.7, i.e., by only∼2%, a very
significant disparity.
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